Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.
نویسندگان
- B P Abbott
- R Abbott
- T D Abbott
- M R Abernathy
- F Acernese
- K Ackley
- C Adams
- T Adams
- P Addesso
- R X Adhikari
- V B Adya
- C Affeldt
- M Agathos
- K Agatsuma
- N Aggarwal
- O D Aguiar
- L Aiello
- A Ain
- P Ajith
- B Allen
- A Allocca
- P A Altin
- A Ananyeva
- S B Anderson
- W G Anderson
- S Appert
- K Arai
- M C Araya
- J S Areeda
- N Arnaud
- K G Arun
- S Ascenzi
- G Ashton
- M Ast
- S M Aston
- P Astone
- P Aufmuth
- C Aulbert
- A Avila-Alvarez
- S Babak
- P Bacon
- M K M Bader
- P T Baker
- F Baldaccini
- G Ballardin
- S W Ballmer
- J C Barayoga
- S E Barclay
- B C Barish
- D Barker
- F Barone
- B Barr
- L Barsotti
- M Barsuglia
- D Barta
- J Bartlett
- I Bartos
- R Bassiri
- A Basti
- J C Batch
- C Baune
- V Bavigadda
- M Bazzan
- C Beer
- M Bejger
- I Belahcene
- M Belgin
- A S Bell
- B K Berger
- G Bergmann
- C P L Berry
- D Bersanetti
- A Bertolini
- J Betzwieser
- S Bhagwat
- R Bhandare
- I A Bilenko
- G Billingsley
- C R Billman
- J Birch
- R Birney
- O Birnholtz
- S Biscans
- A S Biscoveanu
- A Bisht
- M Bitossi
- C Biwer
- M A Bizouard
- J K Blackburn
- J Blackman
- C D Blair
- D G Blair
- R M Blair
- S Bloemen
- O Bock
- M Boer
- G Bogaert
- A Bohe
- F Bondu
- R Bonnand
- B A Boom
- R Bork
- V Boschi
- S Bose
- Y Bouffanais
- A Bozzi
- C Bradaschia
- P R Brady
- V B Braginsky
- M Branchesi
- J E Brau
- T Briant
- A Brillet
- M Brinkmann
- V Brisson
- P Brockill
- J E Broida
- A F Brooks
- D A Brown
- D D Brown
- N M Brown
- S Brunett
- C C Buchanan
- A Buikema
- T Bulik
- H J Bulten
- A Buonanno
- D Buskulic
- C Buy
- R L Byer
- M Cabero
- L Cadonati
- G Cagnoli
- C Cahillane
- J Calderón Bustillo
- T A Callister
- E Calloni
- J B Camp
- W Campbell
- M Canepa
- K C Cannon
- H Cao
- J Cao
- C D Capano
- E Capocasa
- F Carbognani
- S Caride
- J Casanueva Diaz
- C Casentini
- S Caudill
- M Cavaglià
- F Cavalier
- R Cavalieri
- G Cella
- C B Cepeda
- L Cerboni Baiardi
- G Cerretani
- E Cesarini
- S J Chamberlin
- M Chan
- S Chao
- P Charlton
- E Chassande-Mottin
- B D Cheeseboro
- H Y Chen
- Y Chen
- H-P Cheng
- A Chincarini
- A Chiummo
- T Chmiel
- H S Cho
- M Cho
- J H Chow
- N Christensen
- Q Chu
- A J K Chua
- S Chua
- S Chung
- G Ciani
- F Clara
- J A Clark
- F Cleva
- C Cocchieri
- E Coccia
- P-F Cohadon
- A Colla
- C G Collette
- L Cominsky
- M Constancio
- L Conti
- S J Cooper
- T R Corbitt
- N Cornish
- A Corsi
- S Cortese
- C A Costa
- E Coughlin
- M W Coughlin
- S B Coughlin
- J-P Coulon
- S T Countryman
- P Couvares
- P B Covas
- E E Cowan
- D M Coward
- M J Cowart
- D C Coyne
- R Coyne
- J D E Creighton
- T D Creighton
- J Cripe
- S G Crowder
- T J Cullen
- A Cumming
- L Cunningham
- E Cuoco
- T Dal Canton
- S L Danilishin
- S D'Antonio
- K Danzmann
- A Dasgupta
- C F Da Silva Costa
- V Dattilo
- I Dave
- M Davier
- G S Davies
- D Davis
- E J Daw
- B Day
- R Day
- S De
- D DeBra
- G Debreczeni
- J Degallaix
- M De Laurentis
- S Deléglise
- W Del Pozzo
- T Denker
- T Dent
- V Dergachev
- R De Rosa
- R T DeRosa
- R DeSalvo
- J Devenson
- R C Devine
- S Dhurandhar
- M C Díaz
- L Di Fiore
- M Di Giovanni
- T Di Girolamo
- A Di Lieto
- S Di Pace
- I Di Palma
- A Di Virgilio
- Z Doctor
- V Dolique
- F Donovan
- K L Dooley
- S Doravari
- I Dorrington
- R Douglas
- M Dovale Álvarez
- T P Downes
- M Drago
- R W P Drever
- J C Driggers
- Z Du
- M Ducrot
- S E Dwyer
- T B Edo
- M C Edwards
- A Effler
- H-B Eggenstein
- P Ehrens
- J Eichholz
- S S Eikenberry
- R C Essick
- Z Etienne
- T Etzel
- M Evans
- T M Evans
- R Everett
- M Factourovich
- V Fafone
- H Fair
- S Fairhurst
- X Fan
- S Farinon
- B Farr
- W M Farr
- E J Fauchon-Jones
- M Favata
- M Fays
- H Fehrmann
- M M Fejer
- A Fernández Galiana
- I Ferrante
- E C Ferreira
- F Ferrini
- F Fidecaro
- I Fiori
- D Fiorucci
- R P Fisher
- R Flaminio
- M Fletcher
- H Fong
- S S Forsyth
- J-D Fournier
- S Frasca
- F Frasconi
- Z Frei
- A Freise
- R Frey
- V Frey
- E M Fries
- P Fritschel
- V V Frolov
- P Fulda
- M Fyffe
- H Gabbard
- B U Gadre
- S M Gaebel
- J R Gair
- L Gammaitoni
- S G Gaonkar
- F Garufi
- G Gaur
- V Gayathri
- N Gehrels
- G Gemme
- E Genin
- A Gennai
- J George
- L Gergely
- V Germain
- S Ghonge
- Abhirup Ghosh
- Archisman Ghosh
- S Ghosh
- J A Giaime
- K D Giardina
- A Giazotto
- K Gill
- A Glaefke
- E Goetz
- R Goetz
- L Gondan
- G González
- J M Gonzalez Castro
- A Gopakumar
- M L Gorodetsky
- S E Gossan
- M Gosselin
- R Gouaty
- A Grado
- C Graef
- M Granata
- A Grant
- S Gras
- C Gray
- G Greco
- A C Green
- P Groot
- H Grote
- S Grunewald
- G M Guidi
- X Guo
- A Gupta
- M K Gupta
- K E Gushwa
- E K Gustafson
- R Gustafson
- J J Hacker
- B R Hall
- E D Hall
- G Hammond
- M Haney
- M M Hanke
- J Hanks
- C Hanna
- M D Hannam
- J Hanson
- T Hardwick
- J Harms
- G M Harry
- I W Harry
- M J Hart
- M T Hartman
- C-J Haster
- K Haughian
- J Healy
- A Heidmann
- M C Heintze
- H Heitmann
- P Hello
- G Hemming
- M Hendry
- I S Heng
- J Hennig
- J Henry
- A W Heptonstall
- M Heurs
- S Hild
- D Hoak
- D Hofman
- K Holt
- D E Holz
- P Hopkins
- J Hough
- E A Houston
- E J Howell
- Y M Hu
- E A Huerta
- D Huet
- B Hughey
- S Husa
- S H Huttner
- T Huynh-Dinh
- N Indik
- D R Ingram
- R Inta
- H N Isa
- J-M Isac
- M Isi
- T Isogai
- B R Iyer
- K Izumi
- T Jacqmin
- K Jani
- P Jaranowski
- S Jawahar
- F Jiménez-Forteza
- W W Johnson
- D I Jones
- R Jones
- R J G Jonker
- L Ju
- J Junker
- C V Kalaghatgi
- V Kalogera
- S Kandhasamy
- G Kang
- J B Kanner
- S Karki
- K S Karvinen
- M Kasprzack
- E Katsavounidis
- W Katzman
- S Kaufer
- T Kaur
- K Kawabe
- F Kéfélian
- D Keitel
- D B Kelley
- R Kennedy
- J S Key
- F Y Khalili
- I Khan
- S Khan
- Z Khan
- E A Khazanov
- N Kijbunchoo
- Chunglee Kim
- J C Kim
- Whansun Kim
- W Kim
- Y-M Kim
- S J Kimbrell
- E J King
- P J King
- R Kirchhoff
- J S Kissel
- B Klein
- L Kleybolte
- S Klimenko
- P Koch
- S M Koehlenbeck
- S Koley
- V Kondrashov
- A Kontos
- M Korobko
- W Z Korth
- I Kowalska
- D B Kozak
- C Krämer
- V Kringel
- A Królak
- G Kuehn
- P Kumar
- R Kumar
- L Kuo
- A Kutynia
- B D Lackey
- M Landry
- R N Lang
- J Lange
- B Lantz
- R K Lanza
- A Lartaux-Vollard
- P D Lasky
چکیده
We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8} erg cm^{-2} s^{-1} Hz^{-1}(f/25 Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8} sr^{-1}(f/25 Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5, and 7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.
منابع مشابه
Erratum: Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run [Phys. Rev. Lett. 118, 121101 (2017)].
This corrects the article DOI: 10.1103/PhysRevLett.118.121101.
متن کاملSearch for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model
Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F -statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitat...
متن کاملFirst low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Hom...
متن کاملSearch for intermediate mass black hole binaries in the first observing run of Advanced LIGO
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two inde...
متن کاملA radiometer for stochastic gravitational waves
The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the 3rd LIGO science Run (S3). Now I present a new method for obtaining directional upper limits that the LIGO Scientific Collaboration intends to use for future LIGO science runs and that essentially implements a gravitational wave r...
متن کاملDetecting Massive Black Holes via Attometry: Gravitational Wave Astronomy Begins
In their fall 2015 observing run the two detectors of the Advanced Laser Interferometer GravitationalWave Observatory (Advanced LIGO) simultaneously observed transient gravitational-wave signals. The detected waveforms indicated the inspiral and merger of pairs of massive black holes more than 1 billion years ago. These discoveries marked the first direct detections of gravitational waves and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 118 12 شماره
صفحات -
تاریخ انتشار 2017